

Generalized Pigeonhole Principle

if *n* pigeons fly into *m* pigeonholes and, for some positive integer k, n > k.m, then at least one pigeonhole contains k+1 or more pigeons.

Generalized Pigeonhole Principle

For any function f from a finite set X to a finite set Y and for any positive integer k, if $N(X) > k \cdot N(Y)$, then there is some $y \in Y$ such that y is the image of at least k + 1 distinct elements of X.

8

6

Using the Contrapositive Form of the Generalized Pigeonhole Principle

There are 42 students who are to share 12 computers. Each students uses exactly 1 computer, and no computer is used by more than 6 students. Show that at least 5 computers are used by 3 or more students.

k: number of computers used by 3 or more students. \rightarrow We must show that $k \ge 5$

6k: # of students using computers with 3 or more 12-k: # of computers used by at most 2 students 2(12-k) = 24-2k: # of students on computers used by 2 st. at most. (6k) + (24-2k) = 4k + 24: max # of students 42: all students $4k + 24 \ge 42$ So $k \ge 5$

13